This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
handbook_of_image_reconstruction [2012/04/30 13:57] – bgelly | handbook_of_image_reconstruction [2021/01/24 13:45] (current) – bgelly | ||
---|---|---|---|
Line 1: | Line 1: | ||
+ | In real space I(x)=O(x)⋆S(x) | ||
+ | |||
+ | in Fourier space ˆI(u)=ˆO(u).ˆS(u) | ||
+ | |||
+ | Ensemble average for spectral densities: ⟨|ˆI(u)|2⟩=|ˆO(u)|2.⟨|ˆS(u)|2⟩ | ||
+ | |||
+ | ... TBContinued ... | ||
+ | |||
+ | ===Bispectrum=== | ||
+ | ˆTp is the complex fourier tranform. the bispectrum (triple correlation) is: | ||
+ | \begin{equation} | ||
+ | \hat T_{p, | ||
+ | \end{equation} | ||
+ | |||
+ | ===principle of 1-d phase recovery=== | ||
+ | If φ is the phase of the complex fourier spectrum, β is the phase of the complex bispectrum; The phase closure relation is: | ||
+ | |||
+ | exp(iβ(p,q))=exp(iφp).exp(iφq).exp(iφ−p−q) | ||
+ | β(p,q)=φp+φq+φ−p−q | ||
+ | φp+q=φp+φq−β(p,q) (1) | ||
+ | |||
+ | For real 1d signals, φ0=φ(0)=0, the imaginary part of the FT and the phase are odd hence: \\ | ||
+ | β(0,1)=φ0+φ1+φ0−1 | ||
+ | β(0,1)=φ1−φ1=0 (?) | ||
+ | |||
+ | ... maybe ok. But φ1≠0 and cannot be (or it's another signal...) | ||
+ | Now, working on β(n,1): | ||
+ | |||
+ | β(1,1)=φ1+φ1+φ−1−1 | ||
+ | β(1,1)=2φ1−φ2 | ||
+ | φ2=2φ1−β(1,1) | ||
+ | \\ | ||
+ | β(2,1)=φ2+φ1+φ−2−1 | ||
+ | β(2,1)=φ2+φ1−φ3 | ||
+ | φ3=φ2+φ1−β(2,1) | ||
+ | φ3=3φ1−β(2,1)−β(1,1) | ||
+ | hence : \\ | ||
+ | φn=nφ1−β(n−1,1)−...−β(1,1) | ||
+ | φn=nφ1−n−1∑p=1β(p,1) n>1 (2) (1) | ||
+ | |||
+ | Same would apply working on β(1,n) instead of β(n,1), | ||
+ | Now, working on β(n,2): | ||
+ | <columns 100% first column attributes 50% second column attributes | ||
+ | β(3,1)=φ3+φ1+φ−3−2 | ||
+ | β(3,1)=φ3+φ1−φ4 | ||
+ | φ4=φ3+φ1−β(3,1) | ||
+ | < | ||
+ | β(2,2)=φ2+φ2+φ−2−2 | ||
+ | β(2,2)=φ2+φ2−φ4 | ||
+ | φ4=2φ2−β(2,2) | ||
+ | </ | ||
+ | β(3,2)=φ3+φ2+φ−3−2 | ||
+ | β(3,2)=φ3+φ2−φ5 | ||
+ | φ5=φ3+φ2−β(3,2) | ||
+ | avec: | ||
+ | φ3=φ1+φ2−β(1,2) | ||
+ | φ5=φ1+2φ2−β(3,2)−β(1,2) | ||
+ | |||
+ | Mais on n'ira pas tellement plus loin par là... | ||
+ | |||
+ | En pratique deux approches: si on chercher juste la phase sur une " | ||
+ | Attempt to write (2) in 2d | ||
+ | |||
+ | ===2-d | ||
+ | For real 2d signals, the phase closure should be: | ||
+ | β(p1,p2,q1,q2)=φ(p1,p2)+φ(q1,q2)+φ(−p1−q1,−p2−q2) | ||
+ | φ(p1+q1,p2+q2)=φ(p1,p2)+φ(q1,q2)−β(p1,p2,q1,q2) | ||
+ | |||
+ | For real **2d signals**, φ0,0=φ(0,0)=0 (...), and the imaginary part of the FT and the phase are odd hence: \\ | ||
+ | |||
+ | β(0,0,0,1)=φ(0,0)+φ(0,1)+φ(0,−1) | ||
+ | β(0,0,0,1)=φ(0,0)+φ(0,1)−φ(0,1)=0 | ||
+ | same for | ||
+ | β(0,0,1,0)=φ(0,0)+φ(1,0)−φ(1,0)=0 | ||
+ | and also β(0,1,0,0)=β(1,0,0,0)=0. (This is actually ok on my test image); | ||
+ | φ(1,1)=φ(0,1)+φ(1,0)−β(0,1,1,0) (or symmetrical) | ||
+ | beacuse the last term is not nul | ||
+ | |||
+ | β(0,1,0,1)=φ(0,1)+φ(0,1)+φ(0,−2) | ||
+ | φ(0,2)=2φ(0,1)−β(0,1,0,1) | ||
+ | |||
+ | β(0,1,0,2)=φ(0,1)+φ(0,2)+φ(0,−3) | ||
+ | φ(0,3)=φ(0,1)+φ(0,2)−β(0,1,0,2) | ||
+ | φ(0,3)=3φ(0,1)−β(0,1,0,1)−β(0,1,0,2) | ||
+ | |||
+ | hence the same kind of relationships: | ||
+ | |||
+ | φ(0,n)=n φ(0,1)−n−1∑p=1β(0,1,0,p)=n φ(0,1)−n−1∑p=1β(0,p,0,1) | ||
+ | φ(n,0)=n φ(1,0)−n−1∑p=1β(1,0,p,0)=n φ(1,0)−n−1∑p=1β(p,0,1,0) | ||
+ | |||
+ | |||
+ | But also: | ||
+ | |||
+ | β(0,1,x,1)=φ(0,1)+φ(x,1)+φ(−x,−2) | ||
+ | φ(x,2)=φ(0,1)+φ(x,1)−β(0,1,x,1) | ||
+ | |||
+ | φ(x,3)=φ(0,1)+φ(x,2)−β(0,1,x,2) | ||
+ | φ(x,3)=φ(0,1)+φ(0,1)+φ(x,1)−β(0,1,x,2)−β(0,1,x,1) | ||
+ | φ(x,3)=2φ(0,1)+φ(x,1)−β(0,1,x,2)−β(0,1,x,1) | ||
+ | hence | ||
+ | φ(x,n)=(n−1)φ(0,1)+φ(x,1)−n−1∑p=1β(0,1,x,p) | ||
+ | |||
+ | The "quasi 1d" formula can be implemented right away and it works. Anyhow, it only allows to compute the (0,0) centered " | ||
+ | Unlike the 1d case, it is **fundamental** to initialize properly | ||
+ | |||