Processing math: 100%

In real space I(x)=O(x)S(x)

in Fourier space ˆI(u)=ˆO(u).ˆS(u)

Ensemble average for spectral densities: |ˆI(u)|2=|ˆO(u)|2.|ˆS(u)|2

… TBContinued …

Bispectrum

ˆTp is the complex fourier tranform. the bispectrum (triple correlation) is: ˆT(3)p,q=ˆTp.ˆTq.ˆTpq

principle of 1-d phase recovery

If φ is the phase of the complex fourier spectrum, β is the phase of the complex bispectrum; The phase closure relation is:

exp(iβ(p,q))=exp(iφp).exp(iφq).exp(iφpq) β(p,q)=φp+φq+φpq φp+q=φp+φqβ(p,q)     (1)

For real 1d signals, φ0=φ(0)=0, the imaginary part of the FT and the phase are odd hence:
β(0,1)=φ0+φ1+φ01 β(0,1)=φ1φ1=0   (?)

… maybe ok. But φ10 and cannot be (or it's another signal…) Actually: β(0,1)=β(1,0)=0 is true. Same applies to: β(n,0)=β(0,n)=0,  n
Now, working on β(n,1):

β(1,1)=φ1+φ1+φ11 β(1,1)=2φ1φ2 φ2=2φ1β(1,1)
β(2,1)=φ2+φ1+φ21 β(2,1)=φ2+φ1φ3 φ3=φ2+φ1β(2,1) φ3=3φ1β(2,1)β(1,1) hence :
φn=nφ1β(n1,1)...β(1,1) φn=nφ1n1p=1β(p,1)     n>1     (2) (1)

Same would apply working on β(1,n) instead of β(n,1), but that does not make independant determinations. Those will be coming from elsewhere.
Now, working on β(n,2):

β(3,1)=φ3+φ1+φ32 β(3,1)=φ3+φ1φ4 φ4=φ3+φ1β(3,1)

β(2,2)=φ2+φ2+φ22 β(2,2)=φ2+φ2φ4 φ4=2φ2β(2,2)

β(3,2)=φ3+φ2+φ32 β(3,2)=φ3+φ2φ5 φ5=φ3+φ2β(3,2) avec: φ3=φ1+φ2β(1,2) φ5=φ1+2φ2β(3,2)β(1,2)

Mais on n'ira pas tellement plus loin par là…

En pratique deux approches: si on chercher juste la phase sur une “ligne” la relation (2) suffit, mais on n'a aucune statistisque. C'est pratique en mise au point sans bruit, c'est une boucle. Sinon il faut appliquer la relation complète (1) en étant soigneux sur le support du calcul (les extrémités des boucles). Attempt to write (2) in 2d

2-d phase recovery

For real 2d signals, the phase closure should be: β(p1,p2,q1,q2)=φ(p1,p2)+φ(q1,q2)+φ(p1q1,p2q2) φ(p1+q1,p2+q2)=φ(p1,p2)+φ(q1,q2)β(p1,p2,q1,q2)

For real 2d signals, φ0,0=φ(0,0)=0 (…), and the imaginary part of the FT and the phase are odd hence:

β(0,0,0,1)=φ(0,0)+φ(0,1)+φ(0,1) β(0,0,0,1)=φ(0,0)+φ(0,1)φ(0,1)=0 same for β(0,0,1,0)=φ(0,0)+φ(1,0)φ(1,0)=0 and also β(0,1,0,0)=β(1,0,0,0)=0. (This is actually ok on my test image); From this, we cannot determine neither φ(0,1) nor φ(1,0). But if we know them already we can start the iteration at φ(1,1)=φ(0,1)+φ(1,0)β(0,1,1,0) (or symmetrical) beacuse the last term is not nul

β(0,1,0,1)=φ(0,1)+φ(0,1)+φ(0,2) φ(0,2)=2φ(0,1)β(0,1,0,1)

β(0,1,0,2)=φ(0,1)+φ(0,2)+φ(0,3) φ(0,3)=φ(0,1)+φ(0,2)β(0,1,0,2) φ(0,3)=3φ(0,1)β(0,1,0,1)β(0,1,0,2)

hence the same kind of relationships:

φ(0,n)=n φ(0,1)n1p=1β(0,1,0,p)=n φ(0,1)n1p=1β(0,p,0,1) φ(n,0)=n φ(1,0)n1p=1β(1,0,p,0)=n φ(1,0)n1p=1β(p,0,1,0)

But also:

β(0,1,x,1)=φ(0,1)+φ(x,1)+φ(x,2) φ(x,2)=φ(0,1)+φ(x,1)β(0,1,x,1)

φ(x,3)=φ(0,1)+φ(x,2)β(0,1,x,2) φ(x,3)=φ(0,1)+φ(0,1)+φ(x,1)β(0,1,x,2)β(0,1,x,1) φ(x,3)=2φ(0,1)+φ(x,1)β(0,1,x,2)β(0,1,x,1) hence φ(x,n)=(n1)φ(0,1)+φ(x,1)n1p=1β(0,1,x,p)

The “quasi 1d” formula can be implemented right away and it works. Anyhow, it only allows to compute the (0,0) centered “cross” of phases. To compute the rest of it, the general formula must be used, and it is more a complication to stop the general algorithm to recompute that cross than to let it run freely. So in then end I removed this quasi 1d method and stay with the general formula. Unlike the 1d case, it is fundamental to initialize properly φ(0,1) and φ(1,0); otherwise nothing works.

—-

© 2025 CNRS-THEMIS
Terms of use: unless otherwise specified, all graphical (webcam records, movies, pictures) or non-graphical material (text) from this site is property of CNRS-THEMIS under a Creative Commons CC-BY 4.0 license.

handbook_of_image_reconstruction.txt · Last modified: 2021/01/24 13:45 by bgelly
Recent changes RSS feed Debian Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki